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Summary of lectures

Lecture 1 (We 09 Apr 2025) 4

Lie algebras and examples: Abelian, general linear, classical, special
linear, symplectic, orthogonal lie algebras. Construction of lie algebras:
subalgebras, ideals, center, derived lie algeras, products, scalar exten-
sion. The loop lie algebra. Central extension.

Lecture 2 (Fr 11 Apr 2025) 9
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Lecture 1: Examples of lie algebras

Lecture 1
We 09 Apr 2025

Orga 0.0.1. There is a Sciebo share for this course. Usually, information
regarding the lecture can be found on the webpage, but exercise sheets will
also be uploaded on Sciebo.

Tutorials will be Wednesday 12pm and Friday 2pm, starting next week.

To be admitted to the exam, you need 50% of marks on the homework
sheets.

0 Representation theory of Lie algebras

Let us start by motivating why we want to study lie algebras:

• They are infinitesimal versions of linear algebra.

• Versions of Lie groups / algebraic groups.

• We will see many techniques which are non-standard in representation
theory

• We want to “study symmetries” (e.g. related to physics and chemistry).

Given a lie group / algebraic group G, e.g.

• G “ GLnpRq

• G “ SLnpRq

• G “ GLnpCq

• G “ SLnpCq

• G “ tz P C | z “ 1u

one can consider the tangent space g :“ TeG at the identity element e P g. This
will be a lie algebra.

Idea. Say that G Ď MnˆnpCq is a group and X P MnˆnpCq. Then

eX :“
8
ÿ

n“0

Xn

n!
P MnˆnpCq, where by convention X0 :“ identity matrix

converges in the Hilbert-Schmidt norm defined by

∥X∥ :“

d

ÿ

i,j

|Xi,j |2.

What is clear is that eX is invertible with inverse e´X , since e0 is the identity
matrix.

In this case,
g :“ TeG “

␣

X P MnˆnpCq
ˇ

ˇ etX P G @t P R
(

will be the lie algebra associated to G.

0 REPRESENTATION THEORY OF LIE ALGEBRAS 4

https://uni-bonn.sciebo.de/s/RIPa2UpCTvhqp9d


Lecture 1: Examples of lie algebras

Fact 0.0.2. For X,Y P g, we can consider the commutator of matrices
rX,Y s “ XY ´ Y X P g.

What we want is to formalize this data in the corresponding lie group. We
will also want to study representation theory of lie algebras.

1 Basic definitions

Fix a field k.

Definition 1.1 (Lie algebra). A lie algebra (over k) is a vector space
g together with a bilinear map r–, –s : g ˆ g Ñ g, called the lie bracket,
satisfying

(L1) rx, xs “ 0 for all x P g. (antisymmetry)

(L2) rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 @x, y, z P g. (Jacobi identity)

Remark 1.1.3. From (L1), we get that rx, ys “ ´ry, xs for all x, y P g.
Indeed,

0 “ rx ` y, x ` ys “ rx, xs
loomoon

0

`rx, ys ` ry, xs ` ry, ys
loomoon

0

“ rx, ys ` ry, xs.

Hence rx, ys “ ´ry, xs, which is what is usually referred to as antisymmetry.
From rx, ys “ ´ry, xs, one can also deduce 2rx, xs “ 0, which is equivalent
to our definition when char k ‰ 2.

Definition 1.2 (Morphism of lie algebras). Let g1 and g2 be lie algebras.
A morphism of lie algebras φ : g1 Ñ g2 is a linear map such that
φprx, ysq “ rφpxq, φpyqs for all x, y P g1.

Lie algebras together with morphisms of lie algebras give rise to the cate-
gory of lie algebras.

Example 1.3. (0) Let g “ V be any vector space. This can be turned
into a lie algebra by setting rv, ws :“ 0 for v, w P V . This special case
is called an abelian lie algebra (i.e. r–, –s ” 0).

Note that the category of abelian lie algebras is canonically equivalent
to the category of vector spaces.

(1) Let A be a k-algebra. Then A is a lie algebra via ra, bs :“ ab ´ ba
for a, b P A, i.e. the lie bracket is the commutator in A. The Jacobi
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Lecture 1: Examples of lie algebras

identity is the analogue of the associativity of multiplication in A:

ra, rb, css ` rb, rc, ass ` rc, ra, bss

“ ra, bc ´ cbs ` rb, ca ´ acs ` rc, ab ´ bas

“ apbcq ´ apcbq ´ pbcqa ` pcbqa ` bpcaq ´ bpacq ´ pcaqb ` pacqb

` cpabq ´ cpbaq ´ pabqc ` pbaqc

“ 0

An important special case is A “ Mnˆnpkq or A “ EndkpV q for
a vector space V . Using this construction, we get g “ glnpkq and
g “ glpV q, called general linear lie algebras.

(2) Let A be a k-algebra, then we can consider the derivations

DerkpAq :“ tderivations of Au

:“ td : A Ñ A | d is k-linear, dpabq “ dpaqb ` adpbq @a, b P Au .

This is a lie algebra via rd, d1s :“ d ˝ d1 ´ d1 ˝ d.

Note that

pdd1qpabq “ dpd1paqb ` ad1pbqq

“ pdd1paqqb ` d1paqdpbq ` dpaqd1pbq ` appdd1qpbqq

and thus by applying this formula twice

rd, d1spabq “ pdd1paqqb ` d1paqdpbq ` dpaqd1pbq ` apdd1pbqq

´
“

pd1dpaqqb ` dpaqd1pbq ` d1paqdpbq ` apd1dpbqq
‰

“ pdd1paqqb ´ pd1dpaqqb ` apdd1pbqq ´ apd1dpbqq

“ prd, d1spaqqb ` aprd, d1spbqq.

Hence we also have rd, d1s P DerkpAq. The Jacobi identity follows
from associativity of composition analogue to the computation in
(1) .

(3) Classical lie algebras, i.e. lie algebras given by matrices with the
lie bracket r–, –s being the commutator. For example,

slnpkq :“ tA P Mnˆnpkq | TrpAq “ 0u .

From TrpABq “ TrpBAq and linearity of trace, we immediately get
that rA,Bs P slnpkq for any two matrices. We will denote this class
of lie algebras by An as well, suppressing k.

The special linear lie algebra Bn. Let X “ k2n`1 and pick a
symmetric nondegenerate bilinear form β “ p–, –q on V .
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Lecture 1: Examples of lie algebras

Then consider

soβ2n`1 :“ tA P M2n`1,2n`1pkq | pAv,wq ` pv,Awq “ 0u .

Note that for A,B P so2n`1pkq, we have

prA,Bsv, wq ` pv, rA,Bswq “ pABv,wq ´ pBAv,wq ` pv,ABwq ´ pv,BAwq

“ ´pBv,Awq ` pAv,Bwq ´ pAv,Bwq ` pBv,Awq

“ 0

and hence rA,Bs P so2n`1pkq

Similarly, we can construct the lie algebras Cn. Let V “ k2n and
pick a skewsymmetric / symplectic non-degenerate bilinear form β
and consider

spβ2npkq :“ tA P M2n,2npkq | pAv,wq ` pv,Awq “ 0 v, w P V u .

This is a lie algebra and called the symplectic lie algebra.

Dn is the same as Bn except of V “ k2n, yielding the (special)

orthogonal lie algebra soβ2npkq.

Example 1.4. Concretely, the lie algebra sl2pCq has basis

e “

ˆ

0 1
0 0

˙

, f “

ˆ

0 0
1 0

˙

, h “

ˆ

1 0
0 ´1

˙

with lie bracket

rh, es “ 2e, rh, f s “ ´2f, re, f s “ h.

This is the same for any k with char k ‰ 2.

1.1 “New” lie algebras from “old” ones

(1) Let g be a lie algebra. One can get lie algebras with induced lie brackets
as follows:

• lie subalgebras Consider a vector subspace h Ď g such that rh1, h2s P

h for all h1, h2 P h.

• ideal I Ÿ g. Let I Ď g be a vector subspace such that rx, ys P I for
x P I and y P g.

Example 1.5. In the case of g “ sl2pCq, b :“ span te, hu Ď g is
a lie subalgebra, as well as b1 :“ span tf, eu Ď g.

1 BASIC DEFINITIONS 7



Lecture 1: Examples of lie algebras

However, these are not ideals. But span teu Ď b “ span te, hu is
an ideal. Similarly, span tfu Ď b1

If I Ÿ g, then g{I is again a lie algebra by setting

rx ` I, y ` Is :“ rx, ys ` I.

You can check that this is well-defined since I Ÿ g.

Remark 1.5.4. For a given IŸg, we have a short exact sequence
of lie algebras

I ãÑ g g
I

can

with canpxq “ x ` I being the canonical projection.

• For any lie algebra homomorphism φ : g1 Ñ g2, kerφ and imφ are lie
(sub)algebras. You can check that e.g. if x, y P kerφ, then φprx, ysq “

rφpxq, φpyqs “ r0, 0s “ 0, hence rx, ys P kerφ.

In fact, kerφ Ÿ g is an ideal.

• Consider the center

Zpgq :“ tx P g | rx, ys “ 0 | @y P gu .

This is also a lie (sub)algebra. Here we check that if z1, z2 P Zpgq,
we have

rrz1, z2s, ys “ ´ry, rz1, z2ss

“ rz1, rz2, ys
loomoon

“0

s ` rz2, ry, z1s
loomoon

“0

s.

In fact, Zpgq Ÿ g.

• There is the derived lie algebra of g given by

g1 :“ span trx, ys | x, y P gu .

Note that the span here is really necessary. For example, sl2pCq1 “

sl2pCq, but gl2pCq1 ‰ gl2pCq. In fact, gl2pCq1 “ sl2pCq.

• If g1, g2 are lie algebras, we can consider their product

g1 ˆ g2 :“ tpx, yq P g1 ‘ g2 | x P g1, y P g2u ,

which becomes a lie algebra using the bracket

rpx, yq, px1, y1qs :“ prx, x1s, ry, y1sq @x, x1 P g1, y, y
1 P g2

• Let g be a lie algebra and R a commutative R-algebra. Then gbk R
is a lie algebra via

rx b r, x1 b r1s :“ rx, x1s b rr1 @x, x1 P g, r, r1 P R.

This is called the scalar extension of g by R.

1 BASIC DEFINITIONS 8
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Example 1.6 (special). Take R “ krt, t´1s as the Laurent polyno-
mials. This gives the loop lie algebra 1

Lpgq :“ g bk krt, t´1s.

More explicitly, rx b tm, y b tns “ rx, ys b tm`n.

This comes from looking at loops in g:

#

f : S1 Ñ g

ˇ

ˇ

ˇ

ˇ

ˇ

f has a Fourier expansion, fptq “
ÿ

iPZ
ait

i, almost all ai “ 0

+

Example 1.7. As another special case, R “ krts is the polynomial
algebra, and ĝ :“ g bk krts is the current algebra.

(2) The central extensions of a lie algebra g. Let

g̃ :“ g ‘ kc
loomoon

1-dimensional vector space with basis c

.

Can we put a lie algebra structure on g̃ such that g ãÑ g̃ is a lie subalgebra
and kc P Zpg̃q?

We can define the lie bracket by

rx ` λc, y ` µcs :“ rx, ys ` λµΘpx, yqc x, y P g, λ, µ P k. (‹)

Here, Θ: g ˆ g Ñ k “ kc is a function satisfying

C1 Θ is bilinear.

C2 Θpx, xq “ 0.

C3 Θpx, ry, zsq ` Θpy, rz, xsq ` Θpz, rx, ysq “ 0.

Exercise. Under the conditions pCocyc0q-pCocyc2), g̃ becomes a lie alge-
bra with bracket (‹).

Observe. With this construction, hc is central in g̃, i.e. hc Ď Zpg̃q. Also,
we have a short exact sequence of lie algebras

0 kc ãÑ g̃ ↠ g 0,

where kc is considered an abelian lie algebra.

Lecture 2
Fr 11 Apr 2025

1Often referred to just as the “loop algebra”, even though this is incorrect, since it is not
an algebra.
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Lecture 2: Untitled

Orga 1.7.5. The first homework sheet is now online on Sciebo and due
next Wednesday.

1.2 General framework: lie algebra extensions

Definition 1.8. An extension of a lie algebra g by (a lie algebra) h is a
short exact sequence of lie algebras

0 h g̃ g 0.i π

We call the extension central if iphq Ď Zpg̃q.

The extension is said to split if there exists a lie algebra homeomorphism
β : g Ñ g̃ such that

Example 1.9. Consider g̃ “ hˆg where i and π0are the obvious inclusions
and projections, yielding the trivial extension

h g̃ g

h ph, 0q ph, xq x.

This splits with the lie algebra homeomorphism βpxq “ p0, xq, by definition
of r–, –s on g̃. It is central if h is abelian.

Warning. In general, the morphism β need not exist.

Proposition 1.10 (I.1). 1) Given a central extension with a linear map
β : g Ñ g̃ such that π ˝ β “ id, then define

Θpx, yq :“ Θβpx, yq :“ i´1

¨

˝rβpxq, βpyqs ´ βprx, ys
looooooooooooomooooooooooooon

Pkerπ“im i

q

˛

‚: g ˆ g Ñ h.

Then

a) Θ is a 2-cocycle, i.e. it satisfies (Cocyc0)-(Cocyc2) with values in h.

b) There is a lie bracket on g ‘ h defined as

rpx, hq, px1, h1qs :“ rx, x1sg ` Θpx, x1q x, x1 P g h, h1 P h (‹)

such that

Φ :

ˇ

ˇ

ˇ

ˇ

g ‘ h ÝÑ g̃
px, hq ÞÝÑ βpxq ` iphq

1 BASIC DEFINITIONS 10
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is an isomorphism of lie algebras, where on the left hand side we take
the lie bracket in (‹).

2) Given a 2-cocycle Θ: g ˆ g Ñ h (i.e. a map satisfying cocyc0-cocyc2)
with values in an abelian lie algebra h.

Then g‘h becomes a lie algebra denoted g˙Θh via (‹). It defines a central
extension

h ãÑ g ˙Θ h ↠ g.

Proof. 1) a) Θ is clearly bilinear, since both β and the brackets are bilinear.
Θpx, xq “ 0 is clear since β, i are linear and r–, –s is antisymmetric. The Jacobi
identity for Θ is a calculation using the Jacobi identity of the lie bracket r–, –s.

b) We calculate that

rpx, hq, px, hqs “ rx, xsg ` Θpx, xq “ 0 ` 0 “ 0,

since g is a lie algebra and Θ satisfies cocyc1. For the Jacobi identity, notice
that the calculation just arises to the Jacobi identity on g and Cocyc2 for Θ.

It remains to show that Φ is an isomorphism of lie algebras. Clearly, this is an
isomorphism of vector spaces, so we only need to show that it is a lie algebra
homeomorphism. We calculate

Φprx, hs, px1, h1qs “ βprx, x1sq ` ipΘpx, x1qq
“

Φpx, hq,Φpx1, h1q
‰

“ rβpxq ` iphq, βpx1q ` iph1qs

“ rβpxq, βpx1qs
loooooomoooooon

“0

` rβpxq, iph1qs
loooooomoooooon

“0

`riphq, βpx1qs ` riphq, iph1qs
looooomooooon

“0

and equality follows..

2) We need to show that (‹) defines a lie bracket. This is just a calculation
using r–, –s on g and 2-cocycle condition. It is clear that h ãÑ g ˙Θ h ↠ g is a
short exact sequence of vector spaces, so it only remains to check whether i and
π are lie algebra homeomorphisms. We compute

πprx, hs, rx1, h1sq “ πprx, x1s ` Θpx, x1qq “ rx, x1s ` 0
“

πpx, hq, πpx1, h1q
‰

“ rx, x1s.

The extension is central, because

rp0, h1q, px, hqs
(‹)
“ r0, xs ` Θp0, xq “ 0

since r–, –s on g and Θ are both bilinear.

1 BASIC DEFINITIONS 11



Lecture 2: Untitled

Oral remark 1.10.6. This theorem gives rise to switching between exten-
sions and 2-cocycles. We would hope for this to be a bijection, ideally, but
this is not the case, since the construction depends on the choice of β.

Definition 1.11 (Equivalence of extensions). Given two extensions

h g̃ gi π

and

h1 g̃1 g1i1 π1

of g by h, we say that these are equivalent, if there exists a lie algebra
isomorphism Ψ such that the diagram

g̃

h g

g̃1

πi

i1 π1

Ψ

commutes.

Lemma 1.12 (I.2). A central extension splits iff it is equivalent to a trivial
extension.

Proof. Assume that h ãÑ g̃ ↠ g splits, hence a lie algebra morphism β : g Ñ g̃
exists. We define

Ψph, xq :“ iphq ` βpxq h P h, x P g,

which is clearly an isomorphism of vector spaces, i.e. it only remains to check
that it is a lie algebra homeomorphism:

Ψprh, xq, ph1, x1qsq “ Ψprh, h1s ` rx, x1sq “ iprh, h1sq ` βprx, x1sq
“

Ψph, xq,Ψph1, x1q
‰

“
“

iphq ` βpxq, iph1q ` βpx1q
‰

“
“

iphq, iph1q
‰

` riph1q, βpx1qs
loooooomoooooon

“0

` rβpxq, iph1qs
loooooomoooooon

“0

`rβpxq, βpx1qs.

This holds because i and β are lie algebra homeomorphisms and because the
extension is central.

For the converse direction, if Ψ exists, then Ψp0, xq “ βpxq gives a split map.

1 BASIC DEFINITIONS 12
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Lemma 1.13 (I.3). A central extension g ˙Θ h splits if and only if there
exists a µ P Homkpg, hq such that

Θpx, yq “ µprx, ysq @x, y P g.

Proof. Assume that g ˙Θ h splits, so there exists a split map β : g Ñ g ‘ h, say
βpxq “ x ` µpxq with µpxq P h. Clearly, µpxq P Homkpg, hq. Moreover,

rβpxq, βpyqs “ rx ` µpxq, y ` µpyqs

(‹)
“ rx, ys ` Θpx, yq

but also βprx, ysq “ . . .

Conversely, we have to check that Θ is a 2-cocycle. Clearly, it is bilinear and
Θpx, xq “ µprx, xsq “ µp0q “ 0. The (C2) condition follows from the Jacobi
identity. Hence, g ˙Θ h0is defined.

Set βpxq “ x ` µpxq, where µpxq P h by assumption and hence this is split.
Additionally,

rβpxq, βpx1qs “ rx ` µpxq, x1 ` µpx1qs

lie bracket in g ˙Θ g
“ rx, x1s ` Θpx, x1q

βprx, x1sq “ rx, x1s ` µprx, x1sq

“ rx, x1s ` Θpx, x1q

Definition 1.14. Given lie algebras g and h with h abelian, define vector
spaces

Alt2pg, hfrkaq “ tΘ bilinear,Θ: g ˆ g Ñ h | Θpx, xq “ 0 @x P gu .

Z2pg, hq “ tΘ: g ˆ g Ñ h | Θ is a 2-cocycleu

B2pg, hq :“ tΘ: g ˆ g Ñ h | Θ is a 2-cocycle, Dµ P Homkpg, h such that Θpx, yq “ µprx, ysq @x, y P gu .

Note B2 Ď Z2 Ď Alt2. Then, define

H2pg, hq :“ Z2pg, hq
B2pg, h

as the second lie algebra cohomology of g with values in h.

1 BASIC DEFINITIONS 13
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Theorem 1.15 (I.4). There is a bijection of sets

H2pg, hq
1:1

ÐÑ tequivalence classes of central lie alg. extension of g by hu

Θ ÞÝÑ g ˙Θ h
Θβ ÐÝ [ ph ãÑ g̃ Ñ gq

Proof. We only need to show that the given maps are well-defined. The rest
will follow from Proposition 1.10.

We will show the independence of the choice of β here. Assume that β, β1 are
linear split maps, then consider Θβ ´ Θβ1 . We have

Θβpx, yq ´ Θβ1 px, yq “ i´1prβpxq, βpyqs
looooomooooon

“0

´βprx, ysqq ´ i´1prβ1pxq, β1pyqs
loooooomoooooon

“0

`β1prx, ysqq

“ pβ1 ´ βqprx, ysq

Hence by setting µ :“ β1 ´ β P Homkpg, hq we deduce Θβ ´ Θβ1 P B2pg, hq and
therefore Θβ “ Θβ1 .

We will omit the proof that g ˙Θ h „ g ˙Θ1 h if Θ “ Θ1.

Orga 1.15.7. Next time, we will look at examples of extensions. For now,
let us state some definitions needed for the current exercise sheet.

Definition 1.16 (Representation of lie algebra). A representation of a
lie algebra g is a k-vector space V together with a morphism of lie algebras
g Ñ glpV q.

Lemma 1.17 (I.5). The data pV, φq of a representation of a lie algebra g
is equivalent to a linear map

φ̂ : g b V Ñ V, denoted x.v :“ φ̂px b vq

such that
rx, ys.v “ x.py.vq ´ y.px.vq.

Proof. Let pV, φq be a representation of g. Define φ̂px b vq :“ φpxqpvq. This
satisfies

rx, ys .v “ φprx, ysqpvq

φ lie alg hom
“ rφpxq, φpvqsv

lie bracket in glpV q
“ pφpxqφpyq ´ φpyqφpxqqpvq

“ φpxqpφpyqpvqq ´ φpyqpφpxqpvqq

“ x.py.vq ´ y.px.vq

1 BASIC DEFINITIONS 14



Orga 1.17.8. The other direction will be done next time.

Oral remark 1.17.9. This is a very important lemma. We will no longer
distinguish between these two versions of stating a representation from now
on.
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