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Lecture 1 (Mo 9 October 2023) 4

Motivation: Traffic flows, Braess’s paradox. Max Flows over time. Tem-
porally repeated flows and their values. Ford-Fulkerson algorithm.

3



Lecture 1: Max flows over time

Lecture 1
Mo 9 October 20231 Introduction

Question 1.0.1. Which problems can be modelled as flow problems?

Example 1.1. One interesting application are Traffic Flows.

• For example, a central authority might coordinate how people evac-
uate in case of a nearing flood. This is an example of a flow over
time

• In a typical real-life situation, however, there is no such central au-
thority that dictates peoples’ routes. Thus, the setting resembles
much rather a game theoretical problem, since each participant will
individually decide which route to take, potentially leading to solu-
tions that are not globally optimal.

This can lead to unexpected outcomes:

Example 1.2 (Breass’s Paradox). Consider the following traffic network,
where we want to route a total flow of 1:
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Here, an edge of cost x will have cost equal to the amount of flow routed
along it.

The optimum solution (in terms of maximum travel time) is of course to
route flow 1

2 along each of the paths.

It can be shown that this is also the solution that people will actually
choose, since it is always better to use the currently less-congested path,
leading to an equal spread.

However, now considering adding an additional .

2 Max Flows over time
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Lecture 1: Max flows over time

Definition 2.1 (Flow over time). Consider a graph G “ pV,Eq with tran-
sit times tτeuePE and capacities tueuePE .

A flow over time f time horizon T is a Lebesgue integrable function
fe : r0, T q Ñ Rě0 for e P E such that fepθq “ 0 for θ ě T ´ τe.

Oral remark 2.1.2. The assumption on the Lebesgue integrability is just
here for technical reasons, we will not deal much with it. In practice, most
functions that we will encounter are piecewise constant.

Remark: 2.1.3. We can interpret this definition as edges signaling pipes,
and the flow fe denoting the inflow rate to edge e over a certain time.
Then, it takes τe time for the flow to traverse the pipes. Thus, fepθ ´ τeq

denotes the excess flow of edge e at time θ.

Definition 2.3. Let f be a flow over time with horizon T .

a) The capacity constraint is that fepθq ď ue for all e, θ.

b) The excess for a vertex v P V at θ is defined as

exf pv, θq –
ÿ

ePδ´pvq

ˆ ζ´τe

0

fepζqdζ ´
ÿ

ePδ`pvq

ˆ ζ

0

fepζqdζ

c) We say that f has weak flow conservation if

exf pv, θq ě 0@v P V z tsu @θ P r0, T q

exf pv, T q “ 0@v P V z ts, tu

d) We say that f has strict flow conservation if

exf pv, θq “ 0@v P V ts, tu @θ P T

e) The value of f is |f | :“ exf pt, T q.

f) A flow is called feasible if it satisfies the capacity constraints and
has weak flow conservation.

Consider a graph G “ pV,Eq with capacities c : E Ñ Rě0, transit times τ : E Ñ

Rě0, a time horizon T and source/sink vertices s, t.

The Maximum Flow over Time Problem asks for a feasible s-t-flow over
time with time horizon T and maximum value of |f |.
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Lecture 1: Max flows over time

Definition 2.4 (Temporally repeated flow with time horizon T ). Let x be
a static 1s-t (feasible) flow and consider a flow decomposition pXpqpPPYC
with |P Y C| ď |E|.

Now, define a flow over time by

fepθq :“
ÿ

PPPepθq

xp @e “ pv, wq P E θ P r0, T q,

where

Pepθq :“
␣

p P P
ˇ

ˇ p P P, τpPs,vq ď θ, τpPv,tq ď T ´ θ
(

.

Here, the transit times along a fixed path P are defined canonically as

τpPv,wq :“
ÿ

ePPv,w

τe.

The resulting flow is called the temporally repeated flow with time
horizon T associated to the static flow x.

Observation 2.5. The Temporally repeated flow can be obtained as follows:
For each P P P, we send xp into P from s during r0, T ´ τpP qq and then pass
the flow along P .

Note that the temporally repeated flow even fulfills strict flow conservation.

Lemma 2.7. Let x be a static, feasible s-t flow with flow decomposition
pxP qPPPYC and xP “ 0 for all P P P with τpP q ą T and for all cycles.
Denote by f the corresponding temporally repeated flow f .

Then,
|f | “ T ¨ |x| ´

ÿ

ePE

τe ¨ xe.

Proof. Motivated by Observation 2.5, we deduce:

|f | “
ÿ

PPP
pT ´ τpP qq ¨ xP

“ T ¨
ÿ

PPP
xP ´

ÿ

PPP
τpP q ¨ xP

“ T ¨ |x| ´
ÿ

ePE

τe
ÿ

PPP
ePP

xp

loomoon

“xe

1Here, “static” means just “not temporal”
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Lecture 1: Max flows over time

Corollary 2.8. Let x be a static, feasible s-t flow and pxP qPPPYC a flow
decomposition. Then,

|f | ě T ¨ |x| ´
ÿ

ePE

τexe.

Proof. Define a new flow by

x̃P :“

#

xP if P P P and τpP q ď T

0 otherwise

for all P P P Y C. Then, the associated temporally repeated flows satisfy

|f | “

∣∣∣f̃ ∣∣∣
“ T |x̃| ´

ÿ

ePE

τex̃e

ě T |x| ´
ÿ

ePE

τexe

Note that to check the last inequality, it suffices to see that cycles only contribute
to the negative sum and do not change the flow value of x̃ compared to x. For
paths P with τpP q ą T , these contribute to |x| but not to x̃, however, the effect
cancels out by summing the τe along this path in the negative summand.

Algorithmus 1 : Ford-Furkerson Algorithm for maximum flows over time

Input : G “ pV,Eq with capacities c, transit times τ , time horizon T and
source/sink vertices s, t.

Output : A feasible temporally repeated flow

Compute a feasible static s-t-flow x maximizing

T ¨ |x| ´
ÿ

ePE

τexe

Compute a flow decomposition pxP qPPPYC .
Output corresponding temporally repeated flow.

Remark 2.8.4. To implement step 1, consider the auxiliary graph G1 ob-
tained from G by adding an edge pt, sq with infinite capacity. For each
edge, set its cost to τe.

Now, for each static s-t flow x in G gives rise to a circulation in G1 by
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sending |x| along pt, sq, whose cost will be precisely

ÿ

ePE

xe ¨ τe ` |x| ¨ p´T q.

Thus, solving the minimum cost flow problem in G1 yields a desired flow
f .
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