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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
theorem. Algebras. Evaluation morphism.

Lecture 1
Mo 07 Apr 2025

Orga 0.0.1. First, some organizational remarks:

Lecture The lecture always starts at 15 past. It will be 45 mins, 10 mins
of break and then 45 mins again.

eCampus The pasword for the eCampus course is “Hilbert”. The lecture
notes and sheets will be uploaded there.

Exercises • Sheet 0 (ring theory basics) will not be handed in.

• Sheet 1 (topology) is due this Friday.

• Further sheets will be uploaded Thursdays and handed in Thurs-
days the week after

• You will need 50% of the points to be admitted to the exam.
Sheets 0 and 1 will not count towards the total (but points
earned on sheet 1 will count towards your total, i.e. they are
bonus points).

Content We will cover commutative rings and modules in the lecture.

Exam The first exam will be on July 29th.

Goal. As our first goal of the lecture, we want to motivate that rings can be
seen as rings of functions. For this, we will introduce the spectrum of a ring
along with its Zariski topology.

1 The spectrum of a ring

1.1 Rings, ideals and algebras

Definition 1.1 (Ring). A ring is a set A together with two operations

• ` : A ˆ A Ñ A

• ¨ : A ˆ A Ñ A, often abbreviated as ab :“ a ¨ b

such that

(i) pA,`q is an Abelian group. Its neutral element is called 0 (“zero”).

(ii) apbcq “ pabqc @a, b, c P A, i.e. multiplication is associative.

(iii) ab “ ba @a, b P A, i.e. multiplication is commutative.

(iv) D1 P A such that 1 ¨ a “ a @a P A. 1 is called “one”.

(v) apb ` cq “ ab ` ac a, b, c P A, i.e. the distributive law holds

Convention 1.2. All rings are commutative, unless otherwise specified,
i.e. we assume that a ¨ b “ b ¨ a for all a, b P A.
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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
theorem. Algebras. Evaluation morphism.

Definition 1.3. Let A be a ring.

(1) An element a P A is called a unit if there exists b P A with a ¨ b “ 1.
We write Aˆ for the group of units of A.

(2) An element a P A is called zero divisor if there exists b ‰ 0 P A
such that a ¨ b “ 0.

(3) A is called integral domain if 0 is its only zero-divisor.

(4) A is called a field if Aˆ “ Az t0u.

Example 1.4. (1) Z is an integral domain, but not a field.

(2) Z{nZ is a ring. Additionally,

n prime ðñ Z
nZ integral domain ðñ Z

nZ field

We denote Fp :“ Z{pZ if p is a prime.

(3) Q, R, C Fq are fields.

(4) If A is a ring, then ArXs, the polynomial ring in 1 variable, is also a
ring.

Exercise. Show that if A is an integral domain, then ArXs is also
an integral domain.

(5) If A is a ring, then

Arx, x´1s :“

#

m
ÿ

i“´n

aiX
i

ˇ

ˇ

ˇ

ˇ

ˇ

ai P A

+

is a ring.

(6) For all sets I and rings A,

ArtXiuiPI s,

the polynomial ring in the variables Xi, is a ring.

(7) If A is a ring and B Ď A is a subset with 1 P B and @a, b P B : a ´

b, ab P B, then B is called a subring of A. B is itself a ring.

Typical examples are Z Ď Q Ď R Ď C.

(8) If X is a topological space, the set C0pXq of continuous R-valued
functions on X is a ring (with pointwise addition and multiplication
of functions).
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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
theorem. Algebras. Evaluation morphism.

Definition 1.5 (Ring homomorphism). A map f : A Ñ B between rings
is called ring homomorphism if

(i) f is a group homomorphism with respect to addition.

(ii) fpabq “ fpaq ¨ fpbq for all a, b P A.

(iii) fp1q “ 1.

Example 1.6. (1) For all rings A, there is a unique ring homomorphism
f : Z Ñ A.

Indeed, fp1q
(iii)
“ 1, hence

fpnq “ f

˜

n
ÿ

i“1

1

¸

(i)
“

n
ÿ

i“1

fp1q “

n
ÿ

i“1

1A “ :n ¨ 1.

(2) The morphism of Reduction mod n: The unique morphism f : Z Ñ

Z{nZ as in (1).

(3) Field extensions are ring homomorphisms.

(4) If g : X Ñ Y is a continuous map of topological spaces, then

C0pY q ÝÑ C0pXq

f ÞÝÑ f ˝ g

is a ring homomorphism.

Definition 1.7 (Ideal). Let A be a ring.

(1) An ideal I of A is a subgroup of the additive group pA,`q such that
ab P I for all a P A and b P I.

(2) For a subset S Ď A, the ideal (check!)

pSq :“

#

n
ÿ

i“1

λiai

ˇ

ˇ

ˇ

ˇ

ˇ

λi P A, ai P S

+

is the ideal generated by S.

(3) A principal ideal of A is an ideal generated by one element.

(4) An ideal I Ď A is called prime if I ‰ A and for all a, b P A with
ab P I, already a P I or b P I.

(5) An ideal I Ď A is called maximal if I ‰ A and I is maximal with
respect to inclusion, i.e. if I Ď J ‰ A for another ideal J , then
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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
theorem. Algebras. Evaluation morphism.

I “ J .

Example 1.8. (1) For all rings A, we have the

• zero ideal: p0q “ t0u Ď A.

• unit ideal: p1q “ A Ď A. Also, for a P Aˆ, paq “ p1q, hence
the name.

(2) If I, J Ď A are ideals, then their intersection I X J is an ideal.
Infinite intersections also preserve ideals.

(3) If I, J Ď A are ideals, there is the product ideal

I ¨ J :“ ptij | P I, j P Juq .

You can check that I ¨ J Ď I X J .

(4) The ideals of Z are exactly the principal ideals pnq for n P Zě0.

The ideal pnq is maximal if and only if n is prime.

The zero ideal is a prime ideal, but not maximal.

(5) If K is a field, then
pXq Ď KrXs

is a maximal ideal.

For proofs of the following, see the lecture notes of “Einführung in die Algebra”.
The lecture notes are available on eCampus.

Recall. If N Ÿ G is a normal subgroup, then G{N is a group.

Lemma 1.9. Let A be a ring and I Ď A an ideal. Then there exists a
unique ring structure on A{I that makes

A ÝÑ A
I

a ÞÝÑ a :“ a ` I

into a ring homomorphism.

Theorem 1.10 (Homomorphism Theorem). Let f : A Ñ B be a ring ho-
momorphism.

1) The image fpAq Ď B of f is a subring of B.

2) The kernel
kerpfq :“ ta P A | fpaq “ 0u Ď A

is an ideal.
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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
theorem. Algebras. Evaluation morphism.

3) If I Ď A is an ideal, then f : A Ñ B factors through π : A Ñ A{I iff
I Ď kerpfq.

4) There exists a unique g : A{ kerpfq Ñ B such that the following dia-
gram commutes:

A A{ kerpfq

B

π

f g
.

Moreover, g is injective, hence A{ kerpfq impfq.

Lemma 1.11. Let A be a ring and I Ď A an ideal. Then

1) I is a prime ideal iff A{I is an integral domain.

2) I is a maximal ideal iff A{I is a field.

The following is a very important corollary:

Corollary 1.12. Let f : A Ñ B be a ring homomorphism and p Ď B a
prime ideal. Then f´1ppq Ď A is a prime ideal.

Proof. f´1ppq is the kernel of A Ñ B Ñ B
p, hence the homomorphism theorem

gives an inclusion
A

f´1ppq ãÑ B
p.

Since B{p is an integral domain by Lemma 1.11, so is A{f´1ppq as a subring of
an integral domain. Thus, f´1ppq is prime.

Oral remark 1.12.2. Be aware that the same statement does not hold
for maximal ideals. For example, m :“ p0q Ď Q is maximal (since Q is a
field), but f´1p0q “ p0q Ď Z is not maximal.

Definition 1.13 (Algebra). Let A be a ring.

(1) An A-algebra is a ring B together with a ring homomorphism A Ñ

B.

(2) A homomorphism of A-algebras is a ring homomorphism f : B Ñ

B1 of A-algebras such that

B B1

A

f
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Lecture 1: Rings and ideals. Images, Kernels and the Homomorphism
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commutes.

Example 1.14. (1) Every ring is a Z-algebra, and every ring homomor-
phism is a Z-algebra homomorphism.

(2) If A is a ring and I a set,

ArtXiuiPI s

is an A-algebra via the morphism

A ÝÑ ArtXiuiPI s

a ÞÝÑ a.

(3) If A is a ring, B an A-algebra via f : A Ñ B and M Ď B a subset,
then there exists a unique A-algebra homomorphism

evM :

ˇ

ˇ

ˇ

ˇ

ArtXmumPM s ÝÑ B
Xm ÞÝÑ m,

called the evaluation at M . The image of evM is denoted by
ArM s Ď B and called the A-subalgebra of B generated by M .

(4) In p3q, if M “ tbu for some b P B, we have

evb :

ˇ

ˇ

ˇ

ˇ

ArXs ÝÑ B
P “

ř

aiX
i ÞÝÑ

ř

fpaiqb
i.

We write gpbq :“ evbpgq.

Definition 1.15. Let A be a ring and B an A-algebra.

(1) A subsetM Ď B is said to generate B as an A-algebra if B “ ArM s.

(2) B is called finitely generated as an A-algebra, if it can be generated
by finitely many elements.

Corollary 1.16. Let A be a ring and B an A-algebra. Then B is finitely
generated as anA-algebra iff there is an n ě 0 and an ideal I Ď Arx1, . . . , xns

and an A-algebra isomorphism

Arx1, . . . , xns{I
–

ÝÑ B.

Proof. Pick generators b1, . . . , bn P B of B as an A-algebra. Looking at the
evaluation map

evb1,...,bn : Arx1, . . . , xns ↠ B,

it is surjective (because B was generated by the bi). By the Homomorphism
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Lecture 2: Hilbert’s Nullstellensatz

Theorem, this map factors as

Arx1, . . . , xns B

Arx1, . . . , xns
kerpevq

↠

and setting I :“ kerpevq, we get the desired isomorphism.

Lecture 2
Do 10 Apr 2025

Orga 1.16.3. Today (april 14th) 7pm, registration for tutorials will open
on eCampus. Please only register if you plan to take par in the exercises
(which is mandatory for exam admission).

2 Hilbert’s Nullstellenstz v1

Let us represent some facts from an introductory course on algebra.

Definition 2.1 (Irreducible and prime elements of rings). Let A be an
integral domain. Then

1) An element a P A is called irreducible if a R Aˆ, a ‰ 0 and if a “ bc,
then b P Aˆ or c P Aˆ.

2) For a, b P A we say that a divides b and write a | b if there exists a
c P A such that ac “ b.

3) An element a P A is called prime if a ‰ 0, a R Aˆ and if a | bc, then
a | b or a | c.

Example 2.2. (1) In Z, prime elements and irreducible elements are the
same.

(2) a P A is prime if and only if paq ‰ p0q and paq is a prime ideal.

Lemma 2.3. Let A be an integral domain and a P A. If a is prime, then
a is also irreducible.

Definition 2.4. Let A be an integral domain.

(i) A is called principal ideal domain (PID) if every ideal I in A is
principal.

(ii) A unique factorization domain (UFD) if every a P A, a ‰ 0,
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Lecture 2: Hilbert’s Nullstellensatz

a R Aˆ can be written as a product of prime elements uniquely up
to units and permutation.

Lemma 2.5. Let A be a principal ideal domain. Then A is a unique
factorization domain.

Example 2.6. The following are principal ideal domains:

(1) Z.

(2) krXs, where k is a field.

(3) krX,Y s is not a principal ideal domain.

In fact, p1q and p2q are Euclidean rings, i.e. they have a division with
remainder. Generally, Euclidean domains are principal ideal domains.

Theorem 2.7. If A is a unique factorization domain, then ArXs is also a
unique factorization domain.

In particular, krx1, . . . , xns is a unique factorization domain.

Lemma 2.8. In a unique factorization domain, elements are prime if and
only if they are irreducible.

Lemma 2.9. Let A be a principal ideal domain and a P A. Then, the
ideal paq is maximal if and only if a is irreducible.

Corollary 2.10. Let A be a principal ideal domain and p Ď A a non-zero
prime ideal. Then, p is maximal.

Example 2.11. By Corollary 2.10 and Lemma 2.9, we get:

1) The maximal ideals in Z are the ideals ppq with p prime. The only
non-maximal prime ideal is p0q.
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Lecture 2: Hilbert’s Nullstellensatz

Set of prime ideals in Z

Missing

figure

2) If k is a field, and 0 ‰ f P krxs. Then

f P krxsˆ ðñ degpfq “ 0.

If degpfq “ 1, then f is irreducible.

3) We can even fully describe the maximal ideals of krxs in special cases:

Recall. A field k is algebraically closed iff all non-constant poly-
nomials have a root.

Thus, if k is algebraically closed, then

krxs irreducible ðñ degpfq “ 1.

4) Consider x2 ` 1 P Rrxs, which is irreducible. Hence, px2 ` 1q is a
non-zero prime (and maximal) ideal.

Question 2.11.4. What happens in polynomial rings with more variables?

Lemma 2.12. Let k be a field and take a point P “ pa1, . . . , anq P kn.
Then,

mP “ px1 ´ a1, . . . , xn ´ anq Ď krx1, . . . , xns

is a maximal ideal.

Proof. For f P krx1, . . . , xns, we have

f “ fpa1, . . . , anq mod mP

and the composition k ãÑ krx1, . . . , xns Ñ krx1, . . . , xns{mP is injective.

Thus, f P m iff f P kerpφq where φ “ eva1,...,an
. Note that φ is also surjective

(by evaluating at constants), hence by the homomorphism theorem

krx1, . . . , xns
mP

– k

and by Lemma 1.11, mP is maximal.
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Lecture 2: Hilbert’s Nullstellensatz

Goal. We would like to show that if k is algebraically closed, then every maximal
ideal in krx1, . . . , xns is of the form mP for some point P P kn.

We have just seen this for n “ 1, but not generally.

Definition 2.13. Let k be a field and A a k-algebra.

1) An element a P A is called algebraic over k if there exists f ‰ 0 P

krxs with fpaq “ 0.

2) A is called algebraic over k if all a P A are algebraic over k.

3) A finite subset ta1, . . . , anu Ď A is called algebraically indepen-
dent if eva1,...,an

: krx1, . . . , xns Ñ A is injective.

A set M Ď A is called algebraically independent if all finite subsets
of M are algebraically independent.

4) If A is a field, a transcendence basis for A over k is an algebraically
independent subset M Ď A such that A is algebraic over kpMq.

Example: 2.13.5. xn P kpxq is a transcendence basis of kpxq over k for
all n ě 1.

Theorem 2.14 (Existence of transcendence basis). Let L{K be a field
extension.

1) M Ď L is a transcendence basis for L{K iff M is maximally alge-
braically independent.

2) If M 1 Ď L is algebraically independent and M2 Ď L is such that
L{KpM2q is algebraic, then there exists a transcendence basis with
M 1 Ď M Ď M 1 Y M2.

In particular, transcendence bases exist.

Recall. If A is an integral domain, the field of fractions FracpAq of A is the
set of equivalence classes of a

b with a P A, b ‰ 0 P A under the relation ac
bc “ a

b .

Lemma 2.15 (Universal property of the field of fractions). Let A be an
integral domain and f : A Ñ B a ring homomorphism. Then, f factors
through

A ÝÑ FracpAq

a ÞÝÑ a
1

if and only if fpAz t0uq Ď Bˆ.
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Lecture 2: Hilbert’s Nullstellensatz

Lemma 2.16. Let A be an algebra over a field k.

1) If A is an integral domain and algebraic over k, then A is a field.

2) If A is a field and contained in a finitely generated k-algebra, then A
is algebraic over k.

Oral remark 2.16.6. One might be tempted to deduce 2) from 1) by
arguing that A is itself finitely generated over k since it is contained in a
finitely generated k-algebra. However, this is not true in general, as the
following example shows.

Example: 2.16.7. Let k be a field and consider the finitely generated k-
algebra. However, the subalgebra B “ krx, xy, xy2, xy3, . . . s is not finitely
generated.

Corollary 2.17 (Zariski’s Lemma). Let L{K be a field extension. If L is
finitely generated as a K-algebra, then L{K is finite.

Note. The notions of being finitely generated as a k-algebra and being finitely
generated as a field extension over k are not the same.

For example, kpxq{k is finitely generated as a field extension, but not as a k-
algebra.

Corollary 2.18. Let k be a field and let A Ñ B be a morphism of k-
algebras. Let m Ď B be a maximal ideal.

If B is finitely generated as a k-algebra, then f´1pmq is maximal.

Proof. As in Corollary 1.12, by the homomorphism theorem we get a commu-
tative diagram

A B

k A
f´1pmq

B
m

Since B is finitely generated as a k-algebra, so is B{m. Since B{m is also a field,
by Corollary 2.17 it is algebraic over k.

Hence, also A{f´1pmq is algebraic over k. Since A{f´1pmq is an integral domain,
by Lemma 2.16, f´1pmq is in fact maximal.

Corollary 2.19. Let k be an algebraically closed field andm Ď krx1, . . . , xns

2 HILBERT’S NULLSTELLENSTZ V1 14



a maximal ideal. Then, there exists a point P P kn such that m “ mP .

Corollary 2.20 (Hilbert’s Nullstellensatz v1). Let k be an algebraically
closed field and I Ĺ krx1, . . . , xns a proper ideal. Then, there exists P P kn

such that fpP q “ 0 for all f P I.

Proof. By Zorn’s lemma, there is some maximal ideal m with I Ď m. By
Corollary 2.19, m “ mP “ kerpevP q for some point P P kn. Hence, for all f P I,
fpP q “ evP pfq “ 0.
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